EN

论文

当前位置: 首页 > 科学研究 > 科研成果 > 论文 > 正文

Principal Component Analysis for Normal-Distribution-Valued Symbolic Data

来源: | 发布时间🦸🏻:2016-10-12| 点击:
Principal Component Analysis for Normal-Distribution-Valued Symbolic Data

作者:Wang, HW (Wang, Huiwen)[ 1 ] ; Chen, ML (Chen, Meiling)[ 1 ] ; Shi, XJ (Shi, Xiaojun)[ 2,3 ] ; Li, N (Li, Nan)[ 1 ] 

IEEE TRANSACTIONS ON CYBERNETICS  

卷: 46  

期: 2  

页: 356-365  

特刊: SI  

DOI: 10.1109/TCYB.2014.2338079  

出版年: FEB 2016  

摘要

This paper puts forward a new approach to principal component analysis (PCA) for normal-distribution-valued symbolic data, which has a vast potential of applications in the economic and management field. We derive a full set of numerical characteristics and variance-covariance structure for such data, which forms the foundation for our analytical PCA approach. Our approach is able to use all of the variance information in the original data than the prevailing representative-type approach in the literature which only uses centers, vertices, etc. The paper also provides an accurate approach to constructing the observations in a PC space based on the linear additivity property of normal distribution. The effectiveness of the proposed method is illustrated by simulated numerical experiments. At last, our method is applied to explain the puzzle of risk-return tradeoff in China's stock market.

凯发娱乐专业提供☔️:凯发娱乐凯发平台凯发开户等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流😮,凯发娱乐欢迎您。 凯发娱乐官网xml地图
凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐 凯发娱乐